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Note 

Note on the Calculation of Eigenvalues for the 
Stationary Perturbation of Poiseuille Flow 

This paper is an additional note to Bramley and Dennis (J. Compuf. Phys. 47 (1982), 179) 
which calculated the eigenvalues for the stationary perturbation of plane Poiseuille flow. Both 
the velocity/pressure and velocity/voticity formulation of the equations of motion are used 
instead of the streamfunction formulation. It is found that using the velocity/vorticity 
formulation more accurate results are obtained than in Bramley and Dennis. 

1. INTRODUCTION 

Bramley and Dennis [ 1 ] calculated the real and complex eigenvalues of the 
stationary perturbation of Poiseuille flow by solving the differential eigenvalue 
problem 

q4”’ + 2a*q%” + a44 + aR [ $( 1 - y”)(#” + a’#) + 341 = 0 (1.1) 

subject to boundary conditions 

#(*l)=$‘(kl)=O, (1.2) 

where R is the Reynolds number, (r the eigenvalue and $ the eigenfunction. A spectral 
method using Chebyshev polynomials was used and there was some difficulty in 
obtaining the results accurate enough for Reynolds numbers 500 to 2000, particularly 
for complex eigenvalues. To improve matters Bramley and Dennis [2] used initial 
value value methods to obtain the complex eigenvalues which could not be obtained 
using the spectral method in [ 11. The differential eigenvalue problem (1.1) can be 
formulated in either velocity/vorticity form or velocity/pressure form instead of the 
streamfunction formulation as given above. This paper presents the results of [ 1, 2] 
using the governing equations in velocity/vorticity and velocity/pressure forms. 

The reader is referred to [l] for complete details of the problem. No new results 
are obtained but it is shown that the results can be more easely obtained by using the 
velocity/vorticity formulation of equations instead of the streamfunction formulation. 

0021.9991/84$3.00 
Copyright C 1984 by Academx Press, Inc. 
All rights of reproduction in any form reserved. 

524 



EIGENVALUES OF POISEUILLE FLOW 52s 

2. VELOCITY/V• RTICITY FORMULATION 

The two-dimensional incompressible viscous flow in a channel obeys the equations 

and 

(2.1) 

(2.2) 

(2.3) 

where x is the (dimensionless) streamwise coordinate, y is the (dimensionless) 
transverse coordinate and R is the Reynolds number, with a half the channel width 
Uu the volumetric flow rate of the Poiseuille flow over half the channel width. [ is the 
vorticity and u and v are the velocity of the fluid in the x and y directions, respec- 
tively. The no-slip boundary conditions are 

u(*l)=O and U(f1) = 0. (2.4) 

We now look for the perturbation of the Poiseuille flow where 

u = :(I - y’) + eU(y)e-ax, 

v = cV(y)ep”X, 

[= 3y + &Z(y)e-ax, 

(2.5) 

(2.6) 

(2.7) 

and E is small. Substituting into Eqs. (2.1~(2.3) and neglecting squares of e leads to 

V’-aU=O, (23) 

U’+aV+Z=O, (2.9) 
Z” + a2Z + R[iaZ(l - y’) - 3V1 = 0, (2.10) 

with boundary conditions V(,(f 1) = U(* 1) = 0. We now use the Chebyshev spectral 
method as described in Orszag [3] and Bramley and Dennis [ 1 ] to obtain the eigen- 
values a. Equations (2.8~(2.10) uncouple and can be solved over half the channel 
width with either U even and V, Z odd or U odd and V, Z even. Equations 
(2.8)-(2.10) are transformed into equations in which the eigenvalue a only occurs in 
a linear fashion with eigenfunctions U, V, Z, and aZ. The coefftcients of the 
Chebyshev polynomials can now be written in the form 

(A - aB)b = 0, (2.11) 
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where the vector b contains the Chebyshev coefficients of U, I’, 2, and aZ. The form 
of the matrix A is given by Fig. 1 in the case U odd and V, Z even. The two rows of 
l’s are from the boundary conditions and by simple column operations can be 
eliminated. The matrix B becomes the unit matrix and we solve to find the eigen- 
values of A using a QR algorithm. The case where U is even and I’, Z are odd is 
treated in a similar manner. 

The results for the real eigenvalues are the same as those given in Bramley and 
Dennis [ 1 ] except that the eigenvalues for R = 2000 are accurate to another decimal 
place. It is now possible using a spectral method to calculate all of the complex eigen- 
values given by Bramley and Dennis [2]. 

Using 70 terms in either the odd or even Chebyshev expansion one of the three 
complex eigenvalues was not accurate for R = 1000 and two of the three complex 
eigenvalues were not accurate for R = 2000. These eigenvalues could have been 
calculated to the required accuracy by increasing the number of terms in the 
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FIG. 1. Structure of matrix A before column operations are performed. 
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Chebyshev expansion but this was not attempted due to the prohibitive amount of 
computer time required. In the formulation used in [ 1 ] the fourth derivative seems to 
have caused the problem of the results not getting more accurate as the number of 
Chebyshev terms was increased. The Chebyshev expansion of the fourth derivative 
has a term O(m’), where m is the number of terms in the expansion and this term 
becomes very large as m is increased. The above formulation splits the fourth 
derivative into a second derivative and two first derivatives. A second derivative has 
a term O(m”) and a first derivative a term O(m). This being so the matrix A is now 
better conditioned. In the above formulation we still only require the matrix A to be 
4m square as in the formulation of (1.1). Even though in the streamfunction 
formulation there is a single equation, due to the term a4 we needed to introduce 
eigenfunctions a#, a*$, and a’4 in addition to 4 to obtain an algebraic eigenvalue 
problem of the form (2.11). In this note the a* in (2.10) means that we need to 
introduce aZ to add to U, V, and Z already defined. If we use the same number of 
Chebyshev terms for each method the size of A for each method will be the same. 
Making B into the unit matrix by column operations saves computer time. 

3. VELOCITY/PRESSURE FORMULATION 

Using the same notation as in Section 2 the governing equations are 

subject to boundary conditions 

We look for a stationary perturbation like 

u = $(l - y’) + eU( y)e-ax, 

u = cV(y)e-ax, 

(3.1) 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

(3.6) 
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where E is small. Substituting (3.4~(3.6) into (3.1)-(3.3) and nglecting E’ we get 

V’ = aU, (3.7) 

U”+a2U+R[Pa+3yV+$aU(l-y*)]=O, (3.8) 

V”+a*V+R[aV;(l-y2)-P’]=O, (3.9) 

with boundary condition V(;tl) = U(k 1) = 0. The a2 in Eq. (3.8) is eliminated by 
substituting aU= V’ from (3.7). 

In order to have a in a linear manner we define an additional variable aV and we 
now replace U, V, P, and aV by their Chebyshev coefftcients and obtain a linear set 
of algebraic equations 

(A - aB)b = 0, 

for each of the cases U, P even, V odd and U, P odd, V even. 

(3.10) 

The method now follows that described in Section 2 except that it would be more 
difficult to transform B into a unit matrix by row and column operations. We 
therefore solve Eq. (3.10) by a QZ algorithm. The method of Section 2 uses about 
60% of the computer time that this method uses. This method would not be presented 
except that the author intends calculating the eigenvalues for the nonaxisymmetric 
stationary perturbation of Poiseuille flow in a circular pipe and the velocity pressure 
form of the governing equations will be used in that case. It is therefore helpful to 
check that this form gives the correct answer in the plane case. 

The results obtained using the above formulation agree with those in the previous 
section but an extra real eigenvalue is calculated for the case U, P odd, V even. The 
eigenvalues are given in Table I for Reynolds numbers R = 0.25-10.0. The eigenvalue 
value is negative so will be associated with upstream disturbances. It will be noticed 
that a/R z -0.75. An eigenvalue behaving like -0.75/R could exist for R greater 
than 10 but here are several real negative eigenvalues whose modulus is less than this 
one. This extra real eigenvalue is particularly interesting when R is less than about 6 
because it is then the only real eigenvalue. The existance of this eigenvalue was 
checked by increasing the number of Chebyshev polynomials and it is concluded that 

TABLE I 

Reynolds Number Eigenvalue 
R a 

0.25 -0.1874 
0.5 -0.3748 
1.0 -0.7495 
2.5 -1.8734 
5.0 -3.7438 

10.0 -7.4636 
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these eigenvalues exist in this formulation but not in the formulation of Section 2 or 
that of [ 11. 

4. CONCLUDING REMARKS 

This paper shows that the Chebyshev series spectral method can be used to 
calculate all the eigenvalues (both complex and real) of the stationary perturbation of 
Poiseuille flow. The method described in Section 2 uses the least computer time. It is 
not possible to given meaningful computation times because this work of [l] was 
started on a Cyber 73, continued on an ICL 2980 and the work in this note computed 
on an ICL 2988. 
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